Instrumentos científicos utilizados en química

El desarrollo de la espectroscopia

Aunque anteriormente se habían realizado notables aportaciones en este campo, podemos considerar que la espectroscopia moderna parte de los trabajos desarrollados en 1859 por Robert Wilhelm Eberhard Bunsen (1811-1899) y Gustav Robert Kirchhoff (1824-1887), profesores de química y de física en la Universidad alemana de Heidelberg, respectivamente. Kirchhoff estaba interesado por los problemas de la óptica, mientras que Bunsen había trabajado anteriormente en los análisis cualitativos de elementos basados en el color de la llama.

En 1857, Bunsen construyó un mechero de gas que producía una llama sin humo y que podía ser fácilmente regulada. En la exposición aparecen varios de estos "mecheros Bunsen", cuyo esquema aparece representado en el panel dedicado al desarrollo de la espectroscopía.

En 1860, Bunsen y Kirchhoff publicaron un importante trabajo sobre la espectroscopia, cuya traducción castellana puede contemplarse en la exposición. Esta traducción apareció en la Revista de los progresos de las ciencias exactas, físicas y naturales, dos años después de la publicación del artículo original. Sobre este artículo puede contemplarse una de las primeras láminas publicadas en España con espectros atómicos que procede de la traducción castellana del Tratado de Análisis Química Cualitativa de R. Fresenius, realizada, como hemos indicado, por Vicente Peset y aparecida en Valencia en 1885. En el panel, entre los dos retratos de Bunsen y Kirchhoff se encuentra un esquema del nuevo instrumento, procedente del artículo publicado por estos autores en 1860 así como un ejemplo de su modo de empleo.

Esquema del funcionamiento del espectroscopio: El grabado que representa un modelo de espectroscopio semejante al de la exposición, que procede de la Facultad de Ciencias de la Universidad de Valencia. Su funcionamiento puede ser fácilmente comprendido a través del esquema que se encuentra reproducido a continuación. El tubo "B" contiene la lente de observación y el tubo "A" está destinado al paso de la luz que se pretende analizar. El tubo "C" contiene una imagen fotográfica de una escala, hecha sobre una lámina de vidrio, de manera que la posición de cada raya espectral puede determinarse sobre esta escala. La imagen procedente del tubo "A" se refracta sobre el prisma "P" mientras que la imagen de la escala se refleja sobre una las caras del prisma, de modo que se pueden observar ambas imágenes a través del ocular situado en "B".

El uso del espectroscopio permitió a los químicos del siglo XIX detectar sustancias que se encontraban en cantidades demasiado pequeñas para ser analizadas con procedimientos químicos tradicionales. Los nombres de algunos elementos, como el rubidio, cesio, talio e indio, descubiertos gracias a la aplicación de esta nueva técnica de análisis, recuerdan el color de sus líneas espectrales características. En la lámina coloreada con los espectros de emisión de los elementos puede observarse la línea espectral característica del cesio que es de color azul celeste. A partir de esta propiedad, se acuñó el nombre de este elemento que procede del adjetivo latino caesius que significa "azul claro".

Colorímetro

El colorímetro es un aparato basado en la ley de absorción de la luz habitualmente conocida como de "Lambert-Beer". En realidad, estos dos autores científicos nunca llegaron a colaborar puesto que un siglo separa el nacimiento de ambos. Lambert (1728-1777) realizó sus principales contribuciones en el campo de la matemática y la física y publicó en 1760 un libro titulado Photometria, en el que señalaba la variación de la intensidad luminosa al atravesar un rayo de luz un cristal de espesor "d" podía establecerse como I = Io · e–kd, siendo "k" un valor característico para cada cristal. En 1852, August Beer (1825-1863) señaló que esta ley era aplicable a soluciones con diversa concentración y definió el coeficiente de absorción, con lo que sentó las bases de la fórmula que seguimos utilizando actualmente: ln(I/Io) = –kcd

k = coeficiente de absorción molecular, característico de la sustancia absorbente para la luz de una determinada frecuencia.

c = concentración molecular de la disolución

d = espesor de la capa absorbente

Esta propiedad comenzó a ser utilizada con fines analíticos gracias a los trabajos de Bunsen, Roscoe y Bahr, entre otros.

Además de un colorímetro de Dubosq, se expone un colorímetro eléctrico diseñado por B. Lange. Ambos proceden de la Facultad de Ciencias de Valencia. Este último contiene en la parte superior dos recipientes que sirven para introducir los prismas de cuarzo con la disolución analizada y una disolución de concentración conocida. Una célula fotoeléctrica permite medir la intensidad luminosa que atraviesa una y otra muestra, de modo que, si la concentración de una disolución es conocida puede calcularse la otra.

Balanza analítica

La balanza ha sido un instrumento utilizado tradicionalmente por los cultivadores de la química a lo largo del tiempo. Algunos autores suelen considerar la obra de Antoine Lavoisier como el punto de partida del empleo sistemático de las balanzas en química, gracias al uso del principio de conservación de la masa. Hemos visto en nuestra exposición que esta afirmación no es totalmente correcta puesto que la balanza era un instrumento fundamental de trabajo de los "ensayadores de metales", como lo demuestra el libro de Juan de Arfe expuesto, una de cuyas láminas representa una balanza. En cualquier caso, podemos afirmar que el establecimiento de las leyes químicas cuantitativas a finales del siglo XVIII y principios del siglo XIX supuso un mayor protagonismo de la balanza dentro de la química. El desarrollo de los métodos gravimétricos de análisis durante el siglo XIX obligó a la búsqueda de balanzas más cómodas y precisas para el trabajo cotidiano de los químicos. En la exposición se puede contemplar una balanza analítica de este siglo que fue utilizada en la Facultad de Ciencias de Valencia.

Polarímetro

El fenómeno de la polarización de la luz era conocido desde los trabajos de Christian Huygens (1629-1695) pero fue estudiado a fondo por Jean Baptiste Biot (1774-1862) a principios del siglo XIX. Tras estudiar el fenómeno sobre un cristal de cuarzo, Biot encontró la existencia de sustancias que giraban el plano de polarización de la luz hacia la derecha (dextrógiras) y otras que lo hacían hacia la izquierda (levógiras). Los primeros polarímetros fueron diseñados en los años cuarenta del siglo pasado, gracias al uso de los prismas ideados en 1828 por William Nicol (1768-1851), El desarrollo comercial del polarímetro tuvo lugar en Alemania y Francia, debido a su valor en el análisis del azucar, lo que llevó a desarrollar un tipo especial de polarímetros, especialmente adaptados para estos análisis, que se denominaron sacarímetros.

El principio del polarímetro es muy simple, como puede comprobarse a través de la figura adjunta. La luz introducida es polarizada en un plano determinado mediante el polarizador (A) y luego se hace pasar a través de la disolución de la sustancia que se pretende analizar. A continuación, esta luz pasa por un nuevo polarizador (C) que deberá estar colocado en la posición adecuada para permitir el paso de la luz hasta el objetivo (F), para lo cual se dispone de un sistema que permite girarlo alrededor de un eje. Gracias a la lente (D), podemos leer en el círculo (EE) el ángulo que es necesario girar el segundo polarizador para obtener un máximo de intesidad luminosa. Si medimos este ángulo cuando el recipiente está vacío y cuando el recipiente está lleno con una sustancia opticamente activa, la diferencia entre ambos valores nos permite calcular el poder rotatorio de la disolución.

El poder rotatorio de una disolución de una sustancia depende del espesor de la capa atravesada, la naturaleza de la sustancia analizada, la concentración de la disolución, la longitud de onda de la luz y la temperatura. Si conocemos la rotación ([a]tl) producida por un disolución de 1 g/ml de la sustancia en una columna de líquido de 1 decímetro de longitud para una longitud de onda fija (l), podemos determinar la concentración de la muestra analizada a través de la fórmula:

[a] = [a]tl · l· c

donde [a]tl es el poder rotatorio específico de la sustancia correspondiente para una temperatura y una longitud de onda determinada, que normalmente suele ser la línea D del sodio. [a] es la rotación producida por una columna de líquido de longitud "l" (dm) y concentración "c" (g/ml).

El polarímetro que se expone utiliza un método más exacto para el cálculo de rotación del plano de rotación de la luz, mediante el uso de tres polarizadores. Se trata de un modelo conocido como "polarímetro de Lippich".

Más información sobre el polarímetro

interNOSTRUM