El nacimiento de las especialidades de la química

El sistema periódico de los elementos


El nacimiento de las especialidades de la química

Las aportaciones de los autores de los siguientes libros que aparecen en nuestra exposición representan el punto de partida de tres especialidades de la química que comienzaron a diferenciarse claramente a mediados del siglo XIX: la química inorgánica, la química orgánica y la química analítica.

La química inorgánica

• El tratado de química del sueco Jöns Jacob Berzelius (1779-1848) fue una de las obras de referencia más importantes para los químicos de la primera mitad del siglo XIX. Además de sus importantes contribuciones al desarrollo de la química inorgánica, Berzelius es recordado por haber introducido las modernas fórmulas químicas. Se expone el primer volumen de la traducción castellana de los Doctores D. Rafael Sáez y Palacios y D. Carlos Ferrari y Scardini que apareció en Madrid en 15 volúmenes entre 1845 y 1852.

La química orgánica

• Justus von Liebig (1803-1873) fue uno de los principales artífices del desarrollo de la química orgánica del siglo XIX. En la exposición puede contemplarse la traducción de su libro Química orgánica aplicada a la fisiología animal y a la patología..., que apareció en Cádiz en 1845. En el panel aparece también un grabado que representa a Liebig trabajando en su laboratorio y otro del laboratorio de Liebig en Giessen en 1842. Este laboratorio es considerado como uno de los centros más importantes de enseñanza de la química del período. En el estudiaron químicos tan importantes como A.W. Hofmann, Fresenius, Pettenkofer, Kopp, Fehling, Erlenmeyer, Kekulé, Wurtz, Regnault, Gerhardt, Williamson, O. Wolcott Gibbs, entre otros. También estudió con Liebig el español Ramón Torres Muñoz de Luna (1822-1890) que tradujo al castellano alguna obras del químico alemán.

Una de las contribuciones de Liebig en el campo de la química orgánica fue el desarrolló de métodos de análisis más precisos y seguros. El grabado inferior, procedente del Tratado elemental de química general y descriptiva de Santiago Bonilla publicado a finales de siglo, muestra un aparato basado en el método de Liebig para determinar carbono e hidrógeno en sustancias orgánicas. El procedimiento está basado en la propiedad del óxido cúprico de oxidar las sustancias orgánicas que con él se calientan para transformarlas en dióxido de carbono y agua. La sustancia que se desea analizar se deseca y pulveriza, se mezcla con el óxido de cobre y se calienta en el tubo de combustión hasta que se produce la combustión. El agua producida se recoge en tubos que contienen cloruro cálcico, mientras que el dióxido de carbono se recoge en el aparato de la siguiente ilustración, el cual contiene hidróxido de potasio.

Aparato diseñado por Liebig para realizar el análisis de sustancias orgánicas.

Otra contribución fundamental en el desarrollo de la química orgánica de este período fue la introducción por parte de Berzelius del concepto de "isomerismo" y los estudios cristalográficos de Louis Pasteur (1822-1895) sobre los isómeros ópticos del ácido tartárico (ácido 2,3-dihidroxibutanodioico). El "tártaro" (un tartrato ácido de potasio) era bien conocido por los vinicultores como un sólido que se separaba del vino durante la fermentación. El ácido tartárico, constituyente normal de la uva, fue aislado en el siglo XVIII y estudiado por K. G. Scheele (1742-1786). A principios del siglo XIX, se encontró un tipo especial de este ácido que tenía un comportamiento algo diferente del ácido tartárico conocido hasta la fecha, que Gay-Lussac denominó "ácido racémico", del latín racemus (uva). Posteriores análisis mostraron que el ácido tartárico giraba el plano de polarización de la luz polarizada hacia la derecha (actividad óptica dextrógira), mientras que el ácido racémico era ópticamente inactivo. Los estudios cristalográficos de Eilhard Mitscherlich (1794-1863) sobre los tartratos de sodio y amoníaco guiaron las investigaciones del joven Louis Pasteur (1822-1895), en ese momento alumno de la Ecole Normale supérieure en París. En 1848, Louis Pasteur separó los dos tipos de cristales que formaban el ácido racémico y comprobó que eran imágenes especulares uno de otro. Una de estas formas cristalinas coincidía con los cristales del tartrato y desviaba el plano de polarización la luz hacia la derecha, mientras que el otro cristal lo desviaba hacia la izquierda. También comprobó que cuando se disolvían cantidades iguales de ambos cristales, la disolución resultante era ópticamente inactiva. En la exposición puede contemplarse un artículo de Pasteur sobre este tema y un retrato de este científico en su laboratorio de la Ecole Normale de París.

En 1874, Jacobus Henricus Van’t Hoff (1852-1911) y Joseph Achille Le Bel (1847-1930) explicaron la actividad óptica de los diversos isómeros del ácido tartárico mediante la introducción del concepto de "carbono asimétrico", o átomo de carbono unido a cuatro grupos químicos diferentes. En el esquema de la figura puede observarse que el ácido tartárico presenta dos carbonos asimétricos, lo que da lugar a 3 configuraciones espaciales diferentes. Actualmente, continuamos utilizando la expresión "mezcla racémica" para hacer referencia a disoluciones equimoleculares de pares de enantiómeros.

La química analítica

• El desarrollo de la química analítica a mediados del siglo XIX aparece representado en nuestra exposición con las obras de Heinrich Rose (1795-1864) y Karl Remegius Fresenius (1818-1897). Heinrich Rose fue profesor de química en la Universidad de Berlín, desde donde realizó numerosas contribuciones a la química, entre ellas el descubrimiento del niobio. Su libro Handbuch der analytischen Chemie apareció publicado en Berlín en 1829 y fue reeditado en numerosas ocasiones durante todo el resto del siglo. Al contrario de lo que había sido habitual hasta ese momento, Rose trató cada elemento en un capítulo separado en el que indicaba sus correspondientes reacciones analíticas, esquema que hemos conservado hasta la actualidad. El proceso de análisis de Rose se abría con el uso del ácido clorhídrico que permitía identificar la plata, mercurio y plomo. Seguía la precipitación con ácido sulfhídrico para continuar con sulfato de amonio y, finalmente, hidróxido de potasio. La traducción castellana de la obra de Rose que aquí exponemos fue realizada por el médico catalán Pere Mata i Fontanet (1811-1877), discípulo de Mateu Orfila que realizó una notable producción en el campo de la toxicología.

Como hemos dicho anteriormente, K.R. Fresenius (1818-1897) estudió química en el laboratorio de Liebig en Giessen. En 1841 publicó su Anleitung zur qualitativen chemischen Analyse cuya traducción castellana aparecida en 1853 se expone. Tanto esta obra como la que dedicó más tarde al análisis cuantitativo, fue reeditada y traducida en numerosas ocasiones, con sucesivas revisiones del autor para recoger los últimos adelantos, lo que permite considerarla como una de las principales obras de química analítica del siglo XIX. También publicó la primera revista dedicada a la química analítica: Zeitschrift für analytische Chemie que comenzó a aparecer en 1862. Las traducciones al castellano más completas de la obra de Fresenius fueron publicadas en Valencia gracias a la labor del médico Vicente Peset y Cervera (1855-1945).

La química física

La química física no se constituyó como especialidad independiente hasta finales del siglo pasado y principios del actual. Podemos tomar como punto de partida de la nueva especialidad las fechas de creación de dos de las primeras revistas que incorporaron este nombre a su título: la alemana Zeitschrift für physicalische Chemie dirigida por Wolfgang Ostwald (1853-1932) y Jacobus Henricus Van’t Hoff (1852-1911), que comenzó su publicación en 1887, y la estadounidense Journal of Physical Chemistry dirigida por Wilder Dwight Bancroft (1867-1953) desde 1896. A pesar de ello, durante todo el siglo XIX se realizaron notables aportaciones a algunos de los campos que habitualmente suelen reunirse bajo la química física como la termoquímica, la electroquímica o la cinética química.

En la parte inferior derecha del panel de la exposición, aparecen algunos aspectos del desarrollo de los conocimientos sobre electroquímica, cuyo punto de partida hemos situado en la obra de Alessandro Volta (1745-1827), autor de la primera pila que lleva su nombre a principios del siglo XIX. Poco años después, Humphry Davy (1778-1829), cuyo retrato se expone, hizo pasar la corriente eléctrica a través de sosa y potasa fundida, lo que le permitió aislar dos nuevos metales: el sodio y el potasio. Su principal discípulo y su sucesor en la Royal Institution fue Michael Faraday (1791-1867), que continuó las investigaciones de su maestro. En un artículo publicado en 1834, Faraday propuso sus dos conocidas leyes sobre la electrólisis. La primera afirma que la cantidad de sustancia que se deposita en un electrodo es proporcional a la cantidad de carga eléctrica que atraviesa el circuito. En su segunda ley, Faraday afirma que la cantidad de carga eléctrica que provoca el desprendimiento de un gramo de hidrógeno produce el desprendimiento de una cantidad igual al equivalente electroquímico de otras sustancias. En el panel puede contemplarse a Michel Faraday en su laboratorio en la Royal Institution. El grabado situado en la parte inferior derecha del panel representa una pequeña experiencia para comprobar la ley de Faraday .Consiste en un circuito eléctrico en el que se han intercalado varios frascos con electrodos de platino introducidos en disoluciones de diversas sales. Al cabo de un cierto tiempo, la cantidad de corriente eléctrica que ha pasado por el circuito es la misma para todos los frascos, con lo que las cantidades desprendidas de las diferentes sustancias deben guardar una relación igual a la de sus equivalentes electroquímicos.

El sistema periódico de los elementos

El historiador de la ciencia J.W. van Spronsen distingue tres grandes períodos en la creación del sistema periódico de los elementos. En primer lugar, durante todo la primera mitad del siglo XIX los químicos calcularon los pesos atómicos de los elementos y acumularon una gran cantidad de datos experimentales. Durante estos años, se produjeron ya algunos intentos de relacionar los pesos atómicos con las propiedades de los elementos, la más conocida de las cuales son las "triadas" de Johann Wolfgang Döbereiner (1780-1849). Döbereiner comprobó que en algunos grupos de elementos con propiedades química análogas, como los halógenos bromo, cloro y yodo, el peso atómico de uno de estos elementos era igual a la semisuma de los pesos atómicos de los otros dos:

Br = (Cl + I)/2 = (35.470 + 126.470)/2 = 80.470

Sin embargo, la creación de un sistema en el cual todos los elementos se encuentran ordenados de acuerdo con el peso atómico creciente y donde los elementos con propiedades análogas ocupan columnas o grupos, no tuvo lugar hasta la década de los años sesenta del siglo pasado. A pesar de la imagen que suele repetirse en los algunos libros de texto, el descubrimiento del sistema periódico de los elementos debe ser considerado como un descubrimiento múltiple realizado por investigadores de varios países que, en algunos casos, no tenían conocimiento de los trabajos del resto.

Podemos considerar el trabajo del francés Alexandre Emile Béguyer de Chancourtois (1820-1886) como una de las primeras aportaciones en este sentido. Su vis tellurique, que se encuentra reproducida en nuestra exposición, apareció publicada en 1862. Representa un cilindro sobre cuyas caras se han colocado los elementos en orden creciente de números atómicos, de modo que los elementos con propiedades análogas, como el oxígeno, azufre, selenio y teluro, ocupan una columna. Entre 1862 y 1871, se propusieron sistemas periódicos semejantes por diversos autores como John Alexander Reina Newlands (1837-1898), William Odling (1829-1921), Gustavus Detlef Hinrichs (1836-1923), Julius Lothar Meyer (1830-1895) y el ruso Dimitri Ivanovith Mendeleieff (1834-1907).

En un panel de la exposición puede contemplarse una reproducción de un manuscrito de Mendeleieff con una de las primeras versiones de su sistema periódico, así como una versión impresa posterior. Mendeleieff consideraba que la relación entre los pesos atómicos y las propiedades de los elementos constituía una "ley periódica", lo que le llevó a dejar huecos para elementos aún no descubiertos, de los que predijo algunas de sus propiedades.

Si este segundo período de la historia del sistema periódico de los elementos puede denominarse como el "período de descubrimiento", el siguiente lo podemos denominar como el "período de explicación". En efecto, sólo con la introducción del concepto de "número atómico" y con la aclaración de estructura electrónica de los átomos, gracias a la mecánica cuántica, ha sido posible explicar las características de este sistema periódico descubierto por los químicos de la segunda mitad del siglo XIX.

interNOSTRUM